The complexity of positive semidefinite matrix factorization
نویسنده
چکیده
Let A be a matrix with nonnegative real entries. The PSD rank of A is the smallest integer k for which there exist k × k real PSD matrices B1, . . . , Bm, C1, . . . , Cn satisfying A(i|j) = tr(BiCj) for all i, j. This paper determines the computational complexity status of the PSD rank. Namely, we show that the problem of computing this function is polynomial-time equivalent to the existential theory of the reals.
منابع مشابه
Algorithms for Positive Semidefinite Factorization
This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices {A, ..., A} and {B, ..., B} such that Xi,j = trace(AB) for i = 1, ...,m, and ...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملLower bounds on matrix factorization ranks via noncommutative polynomial optimization
We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of o...
متن کاملOn tropical and nonnegative factorization ranks of band matrices
Matrix factorization problems over various semirings naturally arise in different contexts of modern pure and applied mathematics. These problems are very hard in general and cause computational difficulties in applications. We give a survey of what is known on the algorithmic complexity of Boolean, fuzzy, tropical, nonnegative, and positive semidefinite factorizations, and we examine the behav...
متن کاملFast implementation for semidefinite programs with positive matrix completion
Solving semidefinite programs (SDP) in a short time is the key to managing various mathematical optimization problems in practical time. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a structural sparsity of input SDP by factorizing the variable matrices, and it shrinks the computation time. In this paper, we propose a new factorization based on the inverse of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 27 شماره
صفحات -
تاریخ انتشار 2017